%0 Journal Article %T Hygrothermal wave characteristic of nanobeam %A Behrouz Karami %A Davood Shahsavari %A Li Li %A Moein Karami %J Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science %@ 2041-2983 %D 2019 %R 10.1177/0954406218781680 %X Flexural and longitudinal wave behaviors of nanobeams made of nanoporous-graded materials while surrounded by Winkler-Pasternak foundation, subjected to the longitudinal magnetic field and exposed to the hygrothermal environment are studied analytically. To this end, the governing equation derived by Euler¨CBernoulli beam theory in conjunction with the nonlocal strain gradient theory is defined by employing HamiltonĄ¯s principle. By adopting an analytic model, the flexural and longitudinal dispersion relations between phase velocity and wave number are derived. The reliability of the present method is confirmed by comparing the obtained results with those stored in the literature. Finally, the effects of the power-law index, porosity volume fraction, nonlocal and material characteristic parameters, uniform temperature and moisture rise, elastic foundation parameters, magnetic field intensity, and wave number are also investigated in detail. It is found that the small-scale parameters are more influential in higher wave numbers where the wavelength is close to the length scale of nanostructures. However, foundation parameters, porosity volume fraction, and longitudinal magnetic field are more influential in lower wave numbers %K Wave propagation %K nanoporous graded materials %K nonlocal strain gradient theory %K longitudinal magnetic field %K hygrothermal environment %U https://journals.sagepub.com/doi/full/10.1177/0954406218781680