%0 Journal Article %T Rheological studies of functional polyurethane composite: Part 1. Rheology of polyurethane composite, its compounds with and without solid additives (aluminum flakes) %A James L Smith %A Jimmie C Oxley %A Philipp M Baldovi %A Sayavur I Bakhtiyarov %J Journal of Elastomers & Plastics %@ 1530-8006 %D 2018 %R 10.1177/0095244317715787 %X The rheological dynamic characteristics of the functional Polyurethane composite as well as its compounds (triethanolamine (TEOA) and toluene-2,4-diisocyanate (TDI)) with and without solid additives (aluminum flakes) were experimentally measured using a computer-controlled mechanical spectrometer (rheometer) ARES-G2. Rheological studies showed that both components behave as viscous Newtonian fluids. TEOA exhibits a strong temperature-thickening behavior. TEOA with aluminum flake additives behaves as a viscous Newtonian fluid. The effective viscosity of the two-phase mixture increases with the concentration of the aluminum additive and decreases with the temperature rise. The rheometric tests showed that the effective viscosity of the TDI/Al mixture increases with the aluminum content. The mixture exhibits thermal-thickening and shear-thinning behaviors with the yield stress. The system can be described with the Bingham plastic model. It is determined that TEOA/TDI composite exhibits a strong time-thickening and shear-thinning behaviors. The rheological behavior of this composite can be described with the power-law generalized non-Newtonian fluid model. The effective viscosity of TEOA/TDI/Al composite increases with both the testing time (exponentially) and the aluminum content (polynomial) in the mixture. However, these shear-thinning composites obey the power-law generalized non-Newtonian fluid model, and their flow curves can be described by the logarithmic law %K Polyurethane composite %K viscosity %K functional composite %K aluminum %U https://journals.sagepub.com/doi/full/10.1177/0095244317715787