%0 Journal Article %T The Effect of a Sublethal Temperature Elevation on the Structure of Bacterial Communities Associated with the Coral Porites compressa %A Jennifer L. Salerno %A Dan R. Reineman %A Ruth D. Gates %A Michael S. Rapp¨¦ %J Journal of Marine Biology %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/969173 %X Evidence points to a link between environmental stressors, coral-associated bacteria, and coral disease; however, few studies have examined the details of this relationship under tightly controlled experimental conditions. To address this gap, an array of closed-system, precision-controlled experimental aquaria were used to investigate the effects of an abrupt 1ˇăC above summer ambient temperature increase on the bacterial community structure and photophysiology of Porites compressa corals. While the temperature treatment rapidly impacted the photophysiology of the coral host, it did not elicit a statistically significant shift in bacterial community structure from control, untreated corals as determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes. Two of three coral colonies harbored more closely related bacterial communities at the time of collection and, despite statistically significant shifts in bacterial community structure for both control and treatment corals during the 10-day acclimation period, maintained this relationship over the course of the experiment. The experimental design used in this study proved to be a robust, reproducible system for investigating coral microbiology in an aquarium setting. 1. Introduction The worldwide degradation of coral reef ecosystems is due, in part, to the emergence of novel pathogenic diseases affecting scleractinian corals [1, 2], and it has been speculated that the widespread proliferation of coral diseases is linked to increasing sea surface temperatures (SSTs) [3, 4]. Many disease outbreaks correlate with temperature anomalies and seasonal warming [3, 5, 6], and increased SSTs have also been shown to affect the virulence of coral disease pathogens [7]. For example, infection of Pocillopora damicornis by the bacterial pathogen Vibrio coralyticus increases rapidly with increased temperatures [8], and disease outbreaks often follow or co-occur with temperature-induced coral bleaching [2, 6, 9]. Discriminating between bacteria acting as causative agents of coral bleaching [10, 11] versus postbleaching opportunists has been ambiguous [12, 13]. However, it remains undisputed that bacteria play important roles in both maintaining and destabilizing the health of the coral holobiont, which is composed of coral host polyps, symbiotic dinoflagellates known as zooxanthellae, and a diverse assemblage of associated algae, fungi, Bacteria, Archaea, and viruses associated with the skeleton, tissues, and mucus layer of adult coral colonies [14, 15]. Our limited understanding of the %U http://www.hindawi.com/journals/jmb/2011/969173/