%0 Journal Article %T Nuclear Magnetic Resonance Characterization of Water Soluble Organic Carbon of Atmospheric Aerosol Types %A Ilias G. Kavouras %A Marie-Cecile G. Chalbot %J Natural Product Communications %@ 1555-9475 %D 2019 %R 10.1177/1934578X19849972 %X The water soluble organic carbon of the prevalent atmospheric aerosol sources (traffic exhausts, paved road dust, agricultural soil, native soil, wood combustion, epicuticular waxes from pine and broad-leaved trees, and pollen) has been characterized using 1H (1-dimensional), 1H-1H-correlation spectroscopy and 1H-13C-heteronuclear single quantum correlation 2-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Traffic exhaust particles were mainly constituted of primary alcohols, carbohydrates, functionalized olefins, C3 and C4 oxy- and hydroxyl-carboxylic acids, and short-chain alkanes. Road dust was a mixture of soil particles and traffic components. Agricultural, natural, road dust, and traffic particles contained broad signals that were attributed to poly-carboxylic compounds typically found in humic compounds and humic-like substances. Traces of traffic particles (ie, peaks in the 7.3-7.5 ppm [phthalic acid derivatives] and signals found in the 0.5-3 ppm originating from functionalized carboxylic acids) were also found in natural soil dust. Long-chain (>C3) fatty acids and amino acids were found in road dust, natural soil, pine trees waxes, pollen, and woodburning. The aromatic region mainly constituted of lignin derivatives and cellulose/hemicellulose pyrolysis products (signals in 2D-NMR) in woodburning. Primary biogenic and woodburning particles were uniquely clustered as compared to traffic exhausts, road, agricultural, and natural dust based on the relative ratio of hydro-oxygenated functional groups (H-C-O and H-C-C=O) to the sum of aliphatics. Overall, source-specific NMR spectrometric fingerprints, functional composition profiles, and several organic compounds were identified allowing for the reconciliation of ambient organic aerosol sources including the degree of atmospheric aging %K organic aerosols %K 2D-nuclear magnetic resonance %K COSY %K HSQC %K source reconciliation %U https://journals.sagepub.com/doi/full/10.1177/1934578X19849972