%0 Journal Article %T Adult-derived human liver stem/progenitor cells as sensors of inflammation: a potential therapy for liver disorders %A Amir Ali Hamidieh %A Soura Mardpour %J SCIE-indexed Journal %D 2019 %X Advanced liver diseases remain one of the major health issues worldwide. Progressive fibrosis, inflammatory damage, deprivation of metabolic capacity and parenchymal cell death are the main characteristics of end-stage liver diseases. Orthotopic liver transplantation has been considered as the therapy of choice in patients suffering from liver failure such as fulminant liver failure, cirrhosis and hepatocellular carcinoma (HCC). Severe liver donor scarcity has led to the continuous increase of patients with end-stage liver diseases that were listed for liver transplantation. Amongst other treatment strategies, stem cell-based therapies have achieved clinical breakthrough and bridge to liver transplantation (1). In this regard, hepatocyte transplantation provides functional substitution of damaged liver tissue. Adult human primary hepatocytes are mostly isolated from the marginal donor organs that were not applicable for transplantation. Different challenges including scarce supply of the hepatocytes, limited in-vitro expansion potential, low cell viability, the need for scaling up, poor integration into liver parenchyma and in vivo proliferation potential after transplantation lead to notable trends of studies utilizing other sources. Using functional differentiated hepatocytes generated from embryonic/induced pluripotent stem cells or adult stem cells such as mesenchymal stromal cells (MSCs) in experimental models showed structural and metabolic improvement in damaged liver tissue (2,3). Undoubtedly, understanding molecular mechanism which are happened during liver injury comprising activation of hepatic stellate cells and tissue macrophages, secretion of pro-inflammatory cytokines, infiltration of immune cells inside damaged tissue, excessive matrix deposition has led to developing new effective treatments. MSC¡¯s pleiotropic properties including multipotency, immunosuppressive potential, trophic factor secretion during tissue repair, anti-fibrosis, anti-apoptosis and the lack of immunogenicity when administered in allogenic context make them an ideal cell type in clinical setting %U http://hbsn.amegroups.com/article/view/23777/23943