%0 Journal Article %T A Survey on Multipacket Reception for Wireless Random Access Networks %A Jia-Liang Lu %A Wei Shu %A Min-You Wu %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/246359 %X Multipacket reception (MPR) is the capability of simultaneous decoding of more than one packet from multiple concurrent transmissions. Continuous investigations on increasing the reception capability are giving new scientific contributions. In this paper, we provide an overview of MPR-related research work covering (1) the theoretically proved impacts and advantages of using MPR from a channel perspective to network capacity and throughput; (2) the various technologies that enable MPR from transmitter, transreceiver, and receiver perspectives; (3) previous work on protocol improvement to better exploit MPR. Indeed, MPR approaches have been applied in modern wireless mobile systems but the focus of this paper is to discuss MPR in random access wireless networks. Using MPR in such multihop environments calls for new adaptation on protocols, especially a cross-layer approach. To this end, we detail a scheduling method that targets full utilization of MPR capability. 1. Introduction In the past decade, wireless technologies have become key technologies, offering mobile and flexible communications for industries, enterprises and individuals. Unlike a wired network where various kinds of physical connection, over copper, or fiber optics are used, nodes in a wireless network send information to each other sharing the common medium, air. An analogy to the problem is that people want to communicate with each other during a meeting in a room. The key is how to organize the conversations in this small room to let people get as much information as they can. This organization is known as medium access control. The most common assumption is that if several people talk at the same time, their voices will all be perturbed and communication will fail. There are two models for this common phenomenon. From a channel-based point of view, the room is a single communication channel and the key is to enable multiple signals to occupy this channel. There are three basic types of techniques: Time-Division Multiple Access (TDMA), Frequency-Division Multiple Access (FDMA), and Code-Division Multiple Access (CDMA). From a packet-based point of view, the room is the medium, and any simultaneous transmissions will cause collisions. Traditional medium access controls based on the collision model are viewed as collision recovery (e.g., Aloha), collision avoidance (e.g., CSMA/CA), or collision-free (Token Ring) techniques. Different methods of analysis are used for different networks; a channel-based approach is often used for telecommunication systems such as wireless mobile systems, %U http://www.hindawi.com/journals/jcnc/2012/246359/