%0 Journal Article %T Adaptive Probabilistic Proactive Routing for Dense MANETs %A Abdelfettah Belghith %A Mohamed Amine Abid %A Adel Ben Mnaouer %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/234824 %X Conventional proactive routing protocols, due to their inherent nature based on shortest paths, select longer links which are amenable to rapid breakages as nodes move around. In this paper, we propose a novel adaptive probabilistic approach to handle routing information in dense mobile ad hoc networks in a way to improve the proactive routing pertinence as a function of network dynamics. We first propose a new proactive routing framework based on probabilistic decisions and a generic model to compute the existence probabilities of nodes and links. Then, we present a distributed algorithm to collect the cartography of the network. This cartography is used to instantiate the existence probabilities. Conducted simulations show that our proposal yields substantially better routing validity. Nonetheless, it amounts to much longer routes. We proposed then a bounding technique to adapt and overcome this side effect and defined two probabilistic proactive routing variants. Conducted simulations show that our proposed bounded probabilistic proactive routing schemes outperform conventional routing protocols and yield up to 66 percent increase in throughput. 1. Introduction Mobile ad hoc networks (MANETs) are spontaneous networks that do not require any infrastructure for their operations. The task of routing packets from a source to a destination is the sole responsibility of all participating nodes and is distributed among them, where a node can serve as a traffic source, a destination, or a relaying router. All nodes should cooperate, under normal conditions, to fulfill such a requirement. In these networks, nodes and links can appear and disappear spontaneously as a consequence of several facts such as the behavior of users, the depletion of energy resources, but more inherently and subtly the underlying random mobility of the different nodes. These aspects imply a dynamic and randomly evolving topology in both time and space making the routing a real challenging task. A host of routing protocols and algorithms were proposed, though, only very few of them are actually standardized. The standardized routing protocols are classified into reactive and proactive protocols. Reactive protocols, such as DSR [1] and AODV [2], calculate routes only when needed, and as such they are supposed to generate low signaling overhead. Proactive protocols, like the Optimized Link State Routing protocol (OLSR [3]) and the Destination Sequenced Distance Vector routing protocol (DSDV [4]), establish paths for all known source-destination pairs in advance by periodically exchanging %U http://www.hindawi.com/journals/jcnc/2012/234824/