%0 Journal Article %T Exploiting Location and Contextual Information to Develop a Comprehensive Framework for Proactive Handover in Heterogeneous Environments %A G. Mapp %A F. Katsriku %A M. Aiash %A N. Chinnam %A R. Lopes %A E. Moreira %A R. M. Porto Vanni %A M. Augusto %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/748163 %X The development and deployment of several wireless and cellular networks mean that users will demand to be always connected as they move around. Mobile nodes will therefore have several interfaces and connections will be seamlessly switched among available networks using vertical handover techniques. Proactive handover mechanisms can be combined with the deployment of a number of location-based systems that provide location information to a very high degree of accuracy in different contexts. Furthermore, this new environment will also allow contextual information such as user profiles as well as the availability of using location and contextual information to provide efficient handover mechanisms. Using location-based techniques, it is possible to demonstrate that the Time Before Vertical Handover as well as the Network Dwell Time can be accurately estimated. These techniques are dependent on accurately estimating the handover radius. This paper investigates how location and context awareness can be used to estimate the best handover radius. The paper also explores how such techniques may be integrated into the Y-Comm architecture which is being used to explore the development of future mobile networks. Finally, the paper highlights the use of ontological techniques as a mechanism for specifying and prototyping such systems. 1. Introduction The development and deployment of several wireless networks mean that mobile devices will have several wireless interfaces including 3G, WLAN, WiMAX, and LTE. This represents a significant development as users will want to be always connected from anywhere and at any time. This will be achieved using vertical handover techniques where connections will be seamlessly switched between available networks. As explained in [1], handover is defined as the changing of the network point of attachment (POA) of a mobile device. When the device moves to a new point of attachment which is technologically identical to the previous point of attachment, this is called horizontal handover. Vertical handover is defined as a handover where the new point of attachment comprises a different technology when compared with the previous point of attachment [2]. Proactive handover in which the mobile node actively attempts to decide when and where to handover can help to develop an efficient handover policy mechanism. This is because by using proactive handover, it is possible to minimize packet loss and service disruption as an impending handover can be signalled to the higher layers of the network protocol stack. However, in order to %U http://www.hindawi.com/journals/jcnc/2012/748163/