%0 Journal Article %T Benefits of Self-Organizing Networks (SON) for Mobile Operators %A Olav £¿sterb£¿ %A Ole Gr£¿ndalen %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/862527 %X Self-Organizing Networks (SON) is a collection of functions for automatic configuration, optimization, diagnostisation and healing of cellular networks. It is considered to be a necessity in future mobile networks and operations due to the increased cost pressure. The main drivers are essentially to reduce CAPEX and OPEX, which would otherwise increase dramatically due to increased number of network parameters that has to be monitored and set, the rapidly increasing numbers of base stations in the network and parallel operation of 2G, 3G and Evolved Packet Core (EPC) infrastructures. This paper presents evaluations on the use of some of the most important SON components. Mobile networks are getting more complex to configure, optimize and maintain. Many SON functions will give cost savings and performance benefits from the very beginning of a network deployment and these should be prioritized now. But even if many functions are already available and can give large benefits, the field is still in its infancy and more advanced functions are either not yet implemented or have immature implementations. It is therefore necessary to have a strategy for how and when different SON functions should be introduced in mobile networks. 1. Introduction Briefly, SON is a collection of procedures (or functions) for automatic configuration, optimization, diagnostication, and healing of cellular networks. It is considered to be a major necessity in future mobile networks and operations mainly due to possible savings in capital expenditure (CAPEX) and operational expenditure (OPEX) by introducing SON. The SON family consists of a variety of functions that in nature are very different and which maturity are at different levels. As the number of SON functions will increase with each new vendor releases, one of the main issues for operators will be to determine which functions to introduce and also determine the appropriate timing for activating these functions to obtain a well-behaving and cost-efficient network. This paper considers SON for the 3GPP family of technologies, but similar functionality is also included in WiMAX [1]. The GSM/3GPP family of technologies consists of GSM, UMTS, and LTE. GSM (global system for mobile communications) is a 2nd generation (2G) mobile technology and provides a digital, circuit switched network optimized for full duplex voice telephony. Circuit switched and packet switched data transport is also supported. UMTS (universal mobile telecommunications system) is a 3rd generation (3G) mobile technology based on wideband code division multiple %U http://www.hindawi.com/journals/jcnc/2012/862527/