%0 Journal Article %T Dynamic Resource Management in 802.11 Wireless Mesh Networks %A George Athanasiou %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/815374 %X The association/handoff procedures are important components in a balanced operation of 802.11-based wireless mesh networks. In this paper, we introduce the concept of cooperative association where the stations (STA) can share useful information in order to improve the performance of the association/reassociation procedures. Furthermore, in this work we introduce a load balancing mechanism that can be applied in mesh networks. This mechanism operates in a cross-layer manner taking into account uplink and downlink channel information, routing information, and congestion-based information. Our load balancing mechanism is based on a fairness index that is measured at each access point (AP) neighborhood. This index reflects the way the communication load is shared in the neighboring APs. The iterative heuristic algorithms that we propose controls the communication load of each mesh AP in a distributed manner. We evaluate the performance of our mechanisms through OPNET simulations. 1. Introduction The IEEE 802.11 [1] wireless local area networks (WLANs) were originally designed to give a solution to the huge problem of tangled cables of the end user devices. The stations (STAs) are wirelessly connected to the available access points (APs), and the APs are connected to a wired backbone network. The evolution of these networks are the mesh networks where a wireless backbone network is set up in order to support end-to-end wireless user communication [2]. Several wireless routers that are part of this wireless backbone network forward the traffic in the network. In addition, a number of these routers also serve as APs. The STAs are associated with the available APs and send their data through them, using the available resources that the network offer (bandwidth). Undoubtedly, the mesh networks are quite similar to the infrastructure WLANs but they receive an important benefit of their self-organized structure and their dynamic nature. We can allegate that the mesh networks are ad-hoc networks that operate in an infrastructure mode. In this way they combine the benefits of ad-hoc networks and WLANs. In this paper, we propose a cooperative association concept that speeds up the basic association procedure. It is independent from the association protocol that is active in the network. The main outcome of this mechanism is that it eliminates the delays due to scanning/probe and reassociation phases. The algorithm is called ˇ°cooperative,ˇ± since nodes share their view of the network with each other. We have introduced a table that is maintained by each STA and %U http://www.hindawi.com/journals/jcnc/2012/815374/