%0 Journal Article %T 基于近红外高光谱图像的冬枣损伤早期检测 %A 傅隆生 %A 孙世鹏 %A 彭俊 %A 朱兆龙 %A 李瑞 %A null %J 食品科学 %D 2017 %X 为了对冬枣损伤进行早期检测,采用近红外高光谱图像技术对损伤区域成像。针对高光谱图像波长多的特点,分别采用连续投影算法、相关特征选择算法、一致性(Consistency)算法选择冬枣损伤的特征波长,对提取的特征波长分别应用k-邻近、朴素贝叶斯(naive bayes,NB)、支持向量机(support vector machine,SVM)3 种分类方法进行损伤区域识别。结果表明:所有方法选择的一致特征波长在1 353 nm和1 691 nm附近。Consistency算法选择的特征波长在SVM分类器下分类识别正确率达到95.16%,一致特征波长在NB分类器下分类识别正确率达到84.26%,验证了一致波长的有效性,为多光谱成像技术实现在线检测冬枣损伤提供参考依据 %K 冬枣 %K 高光谱成像 %K 特征波长 %K 轻微损伤 %K 检测 %U http://www.spkx.net.cn/CN/abstract/abstract40525.shtml