%0 Journal Article
%T
%A 于浩海
%A 张怀金
%A 王继扬
%A 路大治
%J 物理化学学报
%D 2020
%R 10.3866/PKU.WHXB201907009
%X 中红外非线性光学晶体可以实现中红外激光频率转换、拓展激光波长,在民用和军用领域中有至关重要的应用价值。其中,硅酸镓镧族晶体具有透过范围宽、激光损伤阈值高、晶体质量好等优势,引起了国内外同行的广泛关注。在这篇综述中,我们基于现有的实验数据,研究和分析了三种重要的硅酸镓镧族晶体La3Ga5SiO14 (LGS)、La3Ga5.5Nb0.5O14 (LGN)、La3Ga5.5Ta0.5O14 (LGT)的综合性能,详细总结了它们在电光调Q开关和中红外光参量振荡以及差频激光输出方面的应用。最后,本文还讨论了今后硅酸镓镧族中红外非线性光学晶体的重点发展方向。
In the 1960s, Maiman constructed the first laser. Pulsed lasers with high repetition rates and short pulse widths have extensive applications in fiber optics, military applications, spectroscopy, laser ranging, materials processing, medicine, and frequency conversion, etc. For instance, short pulse lasers with high repetition rates are desirable for material processing, in which the processing speed depends upon the repetition rate of the laser source. Electro-optic Q-switching has numerous advantages in many fields because of its better hold-off ability, larger pulse energy, and more controllable repetition rates. In 1961, Franken et al. first applied a ruby laser directly to quartz crystals and observed double-frequency radiation. Afterward, Bloembergen et al. analyzed the principle of nonlinear optical parametric generation theoretically. Since then, nonlinear optics has been playing an increasingly vital role in human society. Mid-infrared (mid-IR) lasers using nonlinear optical (NLO) crystals have essential applications in science as well as in daily life (e.g., infrared remote sensing, biological tissue imaging, environmental monitoring, and minimally invasive medical surgery). For generating mid-IR lasers in the spectral range of 3–20 μm, NLO materials are indispensable for optical parametric oscillation (OPO) or difference frequency generation. It is common for the available wavelength range to be limited by multiphonon absorption in the oxide crystal, and the damage threshold for semiconductors is relatively low. At present, the most widely used NLO crystal materials in the mid-IR band are semiconductor crystals represented by ZnGeP2. However, their laser damage thresholds are low, which limits their application range. Therefore, one of the key issues in the field of NLO materials at present is to explore new mid-IR NLO crystal materials with excellent performance that are applicable to high-power lasers. Langasite materials are famous for their multifunctionality in optoelectronic applications, such as in piezoelectric convertors, electro-optic Q-switched laser generation, and surface acoustic wave devices. Their structure without central symmetry endows the crystal with electro-optic, piezoelectric, and NLO properties, and their laser damage threshold is high because
%U http://www.whxb.pku.edu.cn/CN/Y2020/V36/I1/1907009