%0 Journal Article %T Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment %J Pharmaceuticals | An Open Access Journal from MDPI %D 2019 %R https://doi.org/10.3390/ph12020076 %X Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic ¦Ã-Fe 2O 3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe 3O 4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer¡¯s method. The morphological and thermogravimetric analysis proved the effective binding of ¦Ã-Fe 2O 3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of M S = 15 emu/g and coercivity H C ¡Ö 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site. View Full-Tex %U https://www.mdpi.com/1424-8247/12/2/76