%0 Journal Article %T 基于深度学习的华东地区PM2.5浓度遥感反演 %A 万一 %A 刘林钰 %A 刘欣怡 %A 张永军 %A 李彦胜 %J 环境科学 %D 2020 %X PM2.5作为大气污染的主要来源,对人类身体健康有着极大的影响.本文提出基于深度学习模型的多要素联合PM2.5反演方法,以PM2.5浓度作为真值数据,引入Himawari气溶胶光学厚度(AOD)日数据产品与温度、相对湿度和气压等10个要素作为反演要素.为验证方法的有效性,采用华东地区2016~2018年的数据分季节开展实验,并与传统反演方法进行对比.结果表明,PM2.5浓度与AOD、降水、风速、高植被覆盖指数呈正相关关系,与矮植被覆盖指数呈负相关关系,与温度、湿度、气压以及DEM的相关性随季节的变化而改变;基于深层神经网络(DNN)反演的PM2.5精度高于传统的线性和非线性模型,各个季节R2均在0.5以上并且误差较小,其中秋季的反演效果最好R2为0.86,夏季为0.75,冬季为0.613,春季为0.566;模型的可视化结果显示,DNN模型的反演结果更接近地面监测站点插值的PM2.5浓度分布,分辨率更高且更精确 %K PM2.5 Himawari数据 华东地区 深度学习 反演 %U http://www.hjkx.ac.cn/hjkx/ch/reader/view_abstract.aspx?flag=1&file_no=20200401&journal_id=hjkx