%0 Journal Article %T 记忆增强的动态多目标分解进化算法 %A 刘敏 %A 曾文华 %J - %D 2013 %R 10.3724/SP.J.1001.2013.04311 %X 现实世界中的一些多目标优化问题经常受动态环境影响而不断发生变化,要求优化算法不断地及时跟踪时变的Pareto 最优解集.提出了一种记忆增强的动态多目标分解进化算法.将动态多目标优化问题分解为若干个动态单目标优化子问题并同时优化这些子问题,以便快速逼近Pareto 最优解集.给出了一个改进的环境变化检测算子,以便更好地检测环境变化.设计了一种基于子问题的串式记忆方法,利用过去类似环境下搜索到的最优解来有效地响应新的环境变化.在8 个标准的测试问题上,将新算法与其他3 种记忆增强的动态进化多目标优化算法进行了实验比较.结果表明,新算法比其他3 种算法具有更快的运行速度、更强的记忆能力与鲁棒性能,并且新算法所获得的解集还具有更好的收敛性与分布性 %K 进化计算 多目标优化 动态环境 记忆方法 分解 %U http://www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=4311&flag=1