%0 Journal Article %T 基于前缀投影技术的大规模轨迹预测模型 %A Louis Alberto GUTIERREZ %A 乔少杰 %A 李天瑞 %A 李斌勇 %A 李荣华 %A 王晓腾 %A 韩楠 %J - %D 2017 %R 10.13328/j.cnki.jos.005340 %X 智能手机、车载GPS终端、可穿戴设备产生了海量的轨迹数据,这些数据不仅描述了移动对象的历史轨迹,而且精确地反映出移动对象的运动特点.已有轨迹预测方法的不足在于:不能同时兼具预测的准确性和时效性,有效的轨迹预测受限于路网等局部空间范围,无法处理复杂、大规模位置数据.为了解决上述问题,针对海量移动对象轨迹数据,结合频繁序列模式发现的思想,提出了基于前缀投影技术的轨迹预测模型PPTP(prefix projection based trajectory prediction model),包含两个关键步骤:(1)挖掘频繁轨迹模式,构造投影数据库并递归挖掘频繁前序轨迹模式;(2)轨迹匹配,以不同频繁序列模式作为前缀增量式扩展生成频繁后序轨迹,将大于最小支持度阈值的最长连续轨迹作为结果输出.算法的优势在于:可以通过较短的频繁序列模式,增量式生成长轨迹模式;不会产生无用的候选轨迹,弥补频繁模式挖掘计算代价较高的不足.利用真实大规模轨迹数据进行多角度实验,表明PPTP轨迹预测算法具有较高的预测准确性,相对于1阶马尔可夫链预测算法,其平均预测准确率可以提升39.8%.基于所提出的轨迹预测模型,开发了一个通用的轨迹预测系统,能够可视化输出完整的轨迹路线,为用户路径规划提供辅助决策支持 %K 轨迹预测 前缀投影 频繁序列模式 轨迹匹配 马尔可夫链 %U http://www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=5340&flag=1