%0 Journal Article %T 自适应轮廓的变分水平集复杂背景多目标检测 %A 余航 %A 冯冬竹 %A 戴浩 %A 范琳琳 %A 袁晓光 %J - %D 2017 %R 10.13328/j.cnki.jos.005172 %X 无需重新初始化的变分水平集模型能够避免经典水平集模型的重复初始化步骤,进而简化计算,缩短检测所需时间,同时能够有效利用图像的边缘梯度信息,从而准确定位图像的局部结构.但该模型不能自适应地获得初始化曲线,水平集的拓扑结构也无法改变,不能解决多个目标的检测问题.针对以上问题,提出了一种基于自适应轮廓的变分水平集复杂背景多目标检测方法,该方法采用帧间差分算法与K-means聚类算法相结合,以获得多个运动目标的初始化曲线,通过形态学方法来降低图像噪声的干扰,从而快速自适应地估计复杂背景下运动目标的位置和轮廓大小.该算法进一步对无需初始化的变分水平集进行改进,将其由单目标检测模型扩展为多目标检测模型,并修正原模型难以处理图像灰度不均匀的问题,最终实现对复杂背景下多个目标的检测.在标准数据库和实际数据集上的测试结果表明,所提方法能够准确地定位不同尺度和灰度目标的轮廓,从而提高算法的演化迭代效率及准确性 %K 变分水平集 帧间差分算法 K-means聚类算法 形态学 复杂背景 %U http://www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=5172&flag=1