%0 Journal Article %T 主题模型在基于社交媒体的灾害分类中的应用及比较 %A Nikita Murzintcev %A 张婷 %A 程昌秀 %A 苏凯 %J 地球信息科学 %D 2019 %X 摘要: “一带一路”沿线为自然灾害高发地区,且多为经济欠发达、抗灾能力弱的发展中国家。灾害发生时,挖掘和分析相关推特数据有助于开展应急救援、灾情评估、减灾防灾等工作,为中国国际救援与救助工作提供重要支撑。主题模型能在没有经验语料库的情况下,从海量灾害相关推文中快速聚合出对灾害救援、评估有价值的信息。本文采用BTM模型和LDA模型,对2013年海燕台风相关推文进行细粒度的主题聚类,分析2个模型的精度并测试它们对近似灾害主题的区分能力,并基于“需求相关”主题类的推文,通过地名匹配,分析了海燕台风发生过程中菲律宾物资、医疗等需求程度的空间分布。结果表明: ① 在区分主题近似的短文本时,BTM总体精度为0.598,LDA的总体精度仅为0.321,说明在海燕台风灾害推文的主题识别中,BTM模型的精度高于LDA模型;② BTM能够较好识别出“灾害地点相关”、“祈福相关”等较为精细的灾害主题;③ 经初步验证,基于“需求相关”主题文本生成的物资、医疗等需求的需求程度空间分布与实际需求情况基本相符。 %K 主题模型 %K BTM %K LDA %K 推文 %K 主题分类 %K 自然灾害 %K 应急管理 %U http://www.dqxxkx.cn/CN/10.12082/dqxxkx.2019.190046