%0 Journal Article %T 基于确定性系数和支持向量机的地质灾害易发性评价 %A 任晓杰 %A 李梦迪 %A 梅红波 %A 胡旭东 %A 李远远 %J 地球信息科学 %D 2018 %X 摘要: 确定性系数(Certainty Factor,CF)是经典的地质灾害影响因子敏感性分析方法;支持向量机(Support Vector Machine, SVM)作为机器学习的代表方法,能够综合各个影响因子的关系,对地质灾害易发性进行评价。本文以云南省怒江州泸水县为研究区,将高程、坡度、坡向、剖面曲率、距断裂的距离、距河网的距离、距路网的距离、地貌类型、岩土体类型、土地利用类型作为该区域地质灾害影响因子,依据各影响因子灾害面积比和分级面积比曲线对影响因子的状态进行分级。根据381个地质灾害隐患点,采用CF方法计算的各个影响因子的敏感性值,作为SVM的分类数据,建立基于CF-SVM的易发性评估模型,同时与单独SVM模型的评价结果进行对比分析。结果表明,CF-SVM模型得到的极高和高易发区主要分布在怒江两岸河谷地带,涵盖了89.76%的地质灾害隐患点,比单独SVM模型具有更高的成功率;利用ROC曲线和P-R曲线对两个模型进行检验,CF-SVM模型的评价精度分别达到92%和88%,均高于单独的SVM。由此说明,CF-SVM模型对地质灾害易发性评价有较高的预测价值,可以为地质灾害风险评估和管理提供依据。 %K 地质灾害 %K 确定性系数 %K 支持向量机 %K 易发性评价 %K 泸水县 %U http://www.dqxxkx.cn/CN/10.12082/dqxxkx.2018.180349