%0 Journal Article %T 基于深度学习的钨钼找矿靶区预测方法研究 %A 刘园园 %A 刘畅 %A 朱伟 %A 李孜轩 %A 李龙斌 %A 蔡惠慧 %J 地球信息科学 %D 2019 %X 摘要: 随着矿产勘查工作由浅部矿向深部隐伏矿、由易识别矿向难识别矿发展,找矿难度日益增大,地质专家越来越重视新理论、新方法、新技术的应用。深度学习作为人工智能的前沿领域/技术,对于实现矿产资源预测“智能化预测评价”具有得天独厚的优势。本文以陕西省镇安县西部钨钼矿集区单元素化探异常原始数据为基础,提出了基于深度学习的钨钼矿产评价方法。该方法以归一化地球化学数据作为模型训练数据,通过深度学习中深度自编码网络方法实现异常值提取进而识别重点成矿有利地段,实现矿产资源找矿远景区定性预测。研究结果表明,在对957条单元素化探异常原始数据分类且做好模型标签后,整个过程在计算机的“黑盒子”中自动完成学习和预测,相较于传统预测研究方法,本文方法具有自动化程度高和客观性强的特征。此外,本文利用已知矿点构建训练数据集,采用随机森林方法对预测区进行矿产资源找矿靶区预测圈定,为进一步缩小找矿靶区范围提供科学依据。 %K 随机森林方法 %K 深度学习 %K 钨钼多金属矿产资源 %K 大数据 %K 预测 %K 评价 %K 陕西镇安西部 %U http://www.dqxxkx.cn/CN/10.12082/dqxxkx.2019.190032