%0 Journal Article %T 一类间歇过程的优化及非线性预测控制 %A 李永强 %A 曹柳林* %J 北京化工大学学报(自然科学版) %D 2009 %X 基于主产物浓度和反应温度的RBF神经网络模型,使用粒子群优化算法(PSO)求解该间歇反应主产物产率最大化问题,进而得到反应温度优化曲线。利用RBF神经网络建立了反应器冷却水控制温度阶段的预测模型,采用非线性预测控制,并引入了模型误差项,增强了控制方法的鲁棒性和间歇过程的抗干扰性能。利用 Lyapunov 原理对该预测控制算法做了稳定性分析,确定了系统稳定条件下的参数的取值范围。同时编制控制程序在多功能过程及控制实验装置(MPCE)装置上实现了算法的控制,并与以升温速率为基准的特殊PID调节器的控制结果比较,结果证明了基于RBF神经网络非线性预测控制方法的有效性。 %U http://www.journal.buct.edu.cn/CN/abstract/abstract13748.shtml