%0 Journal Article %T Automated Clinical Exome Reanalysis Reveals Novel Diagnoses %A Addie I. Nesbitt %A Ahmad N. Abou Tayoun %A Alisha B. Wilkens %A Avni B. Santani %A Bryan L. Krock %A Cara M. Skraban %A Chao Wu %A Elizabeth H. Denenberg %A Elizabeth J. Bhoj %A Elizabeth T. DeChene %A Emma C. Bedoukian %A Ian D. Krantz %A Jennifer Tarpinian %A Jill R. Murrell %A Jorune Balciuniene %A Kajia Cao %A Kieran B. Pechter %A Laura K. Conlin %A Livija Medne %A Mahdi Sarmady %A Matthew A. Deardorff %A Matthew C. Dulik %A Minjie Luo %A Qiaoning Guan %A Samuel W. Baker %A Xiaonan Zhao %A Zhenming Yu %J The Journal of Molecular Diagnostics %D 2019 %R 10.1016/j.jmoldx.2018.07.008 %X Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene¨Cdisease and variant¨Cdisease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. %U https://jmd.amjpathol.org/article/S1525-1578(18)30062-X/fulltext