%0 Journal Article
%T
%A 刘甜
%A 刘维佳
%A 朱育丹
%A 陆小华
%A 黎军
%J 物理化学学报
%D 2018
%R 10.3866/PKU.WHXB201712131
%X 开发高效的催化剂用于催化还原CO2转化为甲酸和它的盐类已经成为研究的热点,是因为将CO2转化为C1产物不仅可以解决CO2的含量升高带来的环境问题,还可以解决化石能源燃烧日趋严重的问题。贵金属配合物催化CO2转化为甲酸和甲酸盐类是目前这类反应最有效的方式,尤其是Ru、Ir和Rh等贵金属。我们之前的研究结果表明Ir(Ⅲ), Ru(Ⅱ)类配合物催化还原CO2转化为甲酸盐的活性是由配合物Ru―H键的成键性质决定的。它们能高活性的催化CO2是由于它们都含有同一种特点的Ru―H键,是由Ru的sd2杂化轨道和H的1s轨道杂化而成的,而且这一特点可以被活性氢的对位配体显著影响。鉴于硼基配体具有强的对位效应,我们基于高活性的均相催化剂Ru(PNP)(CO)H2 (PNP = 2, 6-二(二叔丁基磷甲基)-吡啶)设计了Ru-PNP-HBcat和Ru-PNP-HBpin,并计算了二者催化还原CO2的活性。Bcat和Bpin配体是实验上常用的硼基配体。我们的计算结果表明Ru-PNP-HBcat和Ru-PNP-HBpin有比Ru-PNP-H2更长的Ru―H键、亲核性更强的活性氢,其Ru―H键中的Ru原子的d轨道杂化成分的贡献也比Ru-PNP-H2的更少。相应地Ru-PNP-HBcat和Ru-PNP-HBpin活化CO2的能垒比Ru-PNP-H2低。而且Ru-PNP-H2、Ru-PNP-HBcat和Ru-PNP-HBpin催化CO2转化为甲酸盐的能垒分别为76.2、67.8、54.4 kJ?mol-1,表明Ru-PNP-HBpin具有最高的催化活性。因此,钌配合物催化还原CO2的活性可由硼基配体强的对位效应和Ru―H键的成键性质来调控。
The development of efficient catalysts for the hydrogenation of CO2 to formic acid (FA) or formate has attracted significant interest as it can address the increasingly severe energy crisis and environmental problems. One of the most efficient methods to transform CO2 to FA is catalytic homogeneous hydrogenation using noble metal catalysts based on Ir, Ru, and Rh. In our previous work, we demonstrated that the activity of CO2 hydrogenation via direct addition of hydride to CO2 on Ir(Ⅲ) and Ru(Ⅱ) complexes was determined by the nature of the metal-hydride bond. These complexes could react with the highly stable CO2 molecule because they contain the same distinct metal-hydride bond formed from the mixing of the sd2 hybrid orbital of metal with the 1s orbital of H, and evidently, this property can be influenced by the trans ligand. Since boryl ligands exhibit a strong trans influence, we proposed that introducing such ligands may enhance the activity of the Ru―H bond by weakening it as a result of the trans influence. In this work, we designed two potential catalysts, namely, Ru-PNP-HBcat and Ru-PNP-HBpin, which were based on the Ru(PNP)(CO)H2 (PNP = 2, 6-bis(dialkylphosphinomethyl)pyridine) complex, and computationally investigated their reactivity toward CO2 hydrogenation. Bcat and Bpin (cat = catecholate, pin = pinacolate) are among the most popular boryl ligands in transition metal boryl complexes and have been widely applied in catalytic reactions. Our optimization results revealed that the complexes modified by boryl ligands possessed a longer Ru―H bond. Similarly, natural bond orbital (NBO) charge analysis indicated that the nucleophilic character of the hydride in Ru-PNP-HBcat and Ru-PNP-HBpin was higher as compared to that in Ru-PNP-H2. NBO analysis of the nature of Ru―H bond indicated that these complexes also followed the law of the
%U http://www.whxb.pku.edu.cn/CN/Y2018/V34/I10/1097