%0 Journal Article %T DNA4mcEL:基于核苷酸信息特征计算分析与预测 %A 樊永显 %A 龚浩 %J 中国生物化学与分子生物学报 %D 2019 %R 10.13865/j.cnki.cjbmb.2019.06.09 %X N4-甲基胞嘧啶(N4-methylcytosine, 4mC)是一种重要的表观遗传修饰,在DNA的修复、表达和复制中发挥重要作用。准确鉴定4mC位点有助于深入研究其生物学功能和机制,由于4mC位点的实验鉴定即耗时又昂贵,特别是考虑到基因序列的快速积累,迫切需要补充有效的计算方法。因此,提供一个快速、准确的4mC位点在线预测平台十分必要。目前,还未见对构建必要的预测模型所需的不同特征的机器学习(machine learning, ML)方法进行全面的分析和评估。我们构建多组特征集,并且采用5种ML方法(如随机森林,支持向量机,集成学习等),提出一种称为“DNA4mcEL”的预测方法。在随机10折交叉验证测试下与现有的预测器相比,DNA4mcEL预测C. elegans、D. melanogaster、A. thaliana、E. coli、G. subterraneus、G. pickeringii 6个物种的精度均有提高。基于本方法的预测器DNA4mcEL在这项任务中显著优于现有的预测器。我们希望通过这个综合调查和建立更准确模型的策略,可以作为激发N4-甲基胞嘧啶预测计算方法未来发展的有用指南,加快新N4-甲基胞嘧啶的发现。DNA4mcEL的独立版本可以从https://github.com/kukuky00/DNA4mcEL.git免费获得 %K N4-甲基胞嘧啶 %K 机器学习 %K 集成学习 %K DNA N4-甲基胞嘧啶机器学习 %U http://cjbmb.bjmu.edu.cn/CN/abstract/abstract24566.shtml