%0 Journal Article %T Combining a Fatigue Model and an Incremental Capacity Analysis on a Commercial NMC/Graphite Cell under Constant Current Cycling with and without Calendar Aging %J Batteries | An Open Access Journal from MDPI %D 2019 %R https://doi.org/10.3390/batteries5010036 %X Reliable development of LIBs requires that they be correlated with accurate aging studies. The present project focuses on the implementation of a weighted ampere-hour throughput model, taking into account the operating parameters, and modulating the impact of an exchanged ampere-hour by the well-established three major stress factors: temperature, current intensity (rated), and state of charge (SoC). This model can drift with time due to repeated solicitation, so its parameters need to be updated by on-field measurements, in order to remain accurate. These on-field measurements are submitted to the so-called Incremental Capacity Analysis method (ICA), consisting in the analysis of d Q/d V as a function of V. It is a direct indicator of the state of health of the cell, as the experimental peaks are related to the active material chemical/structural evolution, such as phase transitions and recorded potential plateaus during charging/discharging. It is here applied to NMC/graphite based commercial cells. These peaksĄŻ evolution can be correlated with the here-defined Ah-kinetic and t -kinetic aging, which are chemistry-dependent, and therefore, has to be adjusted to the different types of cells. View Full-Tex %U https://www.mdpi.com/2313-0105/5/1/36