%0 Journal Article %T Aerobic and Anaerobic Biodegradation of 1,2-Dibromoethane by a Microbial Consortium under Simulated Groundwater Conditions %J International Journal of Environmental Research and Public Health | An Open Access Journal from MDPI %D 2019 %R https://doi.org/10.3390/ijerph16193775 %X This study was conducted to explore the potential for 1,2-Dibromoethane (EDB) biodegradation by an acclimated microbial consortium under simulated dynamic groundwater conditions. The enriched EDB-degrading consortium consisted of anaerobic bacteria Desulfovibrio, facultative anaerobe Chromobacterium, and other potential EDB degraders. The results showed that the biodegradation efficiency of EDB was more than 61% at 15 ˇăC, and the EDB biodegradation can be best described by the apparent pseudo-first-order kinetics. EDB biodegradation occurred at a relatively broad range of initial dissolved oxygen (DO) from 1.2 to 5.1 mg/L, indicating that the microbial consortium had a strong ability to adapt. The addition of 40 mg/L of rhamnolipid and 0.3 mM of sodium lactate increased the biodegradation. A two-phase biodegradation scheme was proposed for the EDB biodegradation in this study: an aerobic biodegradation to carbon dioxide and an anaerobic biodegradation via a two-electron transfer pathway of dihaloelimination. To our knowledge, this is the first study that reported EDB biodegradation by an acclimated consortium under both aerobic and anaerobic conditions, a dynamic DO condition often encountered during enhanced biodegradation of EDB in the field. View Full-Tex %U https://www.mdpi.com/1660-4601/16/19/3775