%0 Journal Article %T Left Eigenvector of a Stochastic Matrix %A Sylvain Lavalle¡äe %J Advances in Pure Mathematics %P 105-117 %@ 2160-0384 %D 2011 %I Scientific Research Publishing %R 10.4236/apm.2011.14023 %X We determine the left eigenvector of a stochastic matrix <i>M</i> associated to the eigenvalue 1 in the commutative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (<i>N</i><sub>1</sub>,<i>N<sub>n</sub></i>) , where <i>N</i><sub>i</sub> is the <i>i</i>¨C<i>th</i> iprincipal minor of <i>N</i>=<i>M</i>¨C<i>I<sub>n</sub></i> , where <i>I<sub>n</sub></i> is the identity matrix of dimension <i>n</i>. In the noncommutative case, this eigenvector is (<i>P</i><sub>1</sub><sup>-1</sup>,<i>P</i><sub><i>n</i></sub><sup>-1</sup>) , where <i>P<sub>i</sub></i> is the sum in Q¡¶¦Á<sub><i>ij</i></sub>¡· of the corresponding labels of nonempty paths starting from <i>i</i> and not passing through <i>i</i> in the complete directed graph associated to <i>M</i> . %K Generic Stochastic Noncommutative Matrix %K Commutative Matrix %K Left Eigenvector Associated To The Eigenvalue 1 %K Skew Field %K Automata %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=6483