%0 Journal Article %T Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study %A Amir Pasha Mahmoudzadeh %A Benjamin Hinton %A Bo Fan %A Bonnie Joe %A Heather Greenwood %A John Shepherd %A Karla Kerlikowske %A Lin Ma %A Serghei Malkov %A Vivian Lee %J Archive of "Cancer Imaging". %D 2019 %R 10.1186/s40644-019-0227-3 %X Schematic of the architecture of the deep learning network used in this study. YxY conv, M/N£¿=£¿M kernels of YxYx3 size and stride length of N (N£¿=£¿1 if only M is listed). Fully Connected (FC) Layer£¿=£¿Dense (256), Dropout, Dense (1 %K Breast Cancer %K Masking %K Mammography %K Interval Cancer %K Deep learning %K Transfer learning %K Neural network %K Breast density %U https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589178/