%0 Journal Article %T Personalized Sports Video Customization Using Content and Context Analysis %A Chao Liang %A Changsheng Xu %A Hanqing Lu %J International Journal of Digital Multimedia Broadcasting %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/836357 %X We present an integrated framework on personalized sports video customization, which addresses three research issues: semantic video annotation, personalized video retrieval and summarization, and system adaptation. Sports video annotation serves as the foundation of the video customization system. To acquire detailed description of video content, external web text is adopted to align with the related sports video according to their semantic correspondence. Based on the derived semantic annotation, a user-participant multiconstraint 0/1 Knapsack model is designed to model the personalized video customization, which can unify both video retrieval and summarization with different fusion parameters. As a measure to make the system adaptive to the particular user, a social network based system adaptation algorithm is proposed to learn latent user preference implicitly. Both quantitative and qualitative experiments conducted on twelve broadcast basketball and football videos validate the effectiveness of the proposed method. 1. Introduction The proliferation of advanced program production technology and multiple TV broadcast channels have contributed to an amazing growth of sports video content and its increasing popularity among the public. However, such increasing availability has not yet been accompanied by an improvement in its accessibility, which means that audiences can do nothing but passively watch the whole match edited by studio professionals once they choose it. Since interesting segments usually account for a small portion of the whole match; such passive watching mode not only impairs audiences' viewing experience but also wastes their time and money. To solve this problem, the ability to provide personalized video content in accordance to the features of individual viewers is of great importance. Intuitively, viewers difference first comes through in their diverse preference towards semantic content where particular players and events are appearing in the video. For example, a Beckham's fan may mainly focus his attention on this football star than any other players, while an NBA's audience may prefer to watch the slam dunk than any other events. To meet these requirements, the source video has to be analyzed in a more refined scale and higher semantic level. More precisely, the video analysis should not merely tag some salient events with simple concepts, for example, shots in basketball or fouls in football, but annotate various events with detailed semantic description, including the involved player(s), event type(s), and result consequence. %U http://www.hindawi.com/journals/ijdmb/2010/836357/