%0 Journal Article %T Cross-Layer Optimization of DVB-T2 System for Mobile Services %A Lukasz Kondrad %A Vinod Kumar Malamal Vadakital %A Imed Bouazizi %A Miika Tupala %A Moncef Gabbouj %J International Journal of Digital Multimedia Broadcasting %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/435405 %X Mobile broadcast services have experienced a strong boost in recent years through the standardization of several mobile broadcast systems such as DVB-H, ATSC-M/H, DMB-T/H, and CMMB. However, steady need for higher quality services is projected to surpass the capabilities of the existing mobile broadcast systems. Consequently, work on new generations of mobile broadcast technology is starting under the umbrella of different industry consortia, such as DVB. In this paper, we address the question of how DVB-T2 transmission can be optimized for improved mobile broadcast reception. We investigate cross-layer optimization techniques with a focus on the transport of scalable video (SVC) streams over DVB-T2 Physical Layer Pipes (PLP). Throughout the paper, we propose different optimization options and verify their utility. 1. Introduction The success of the DVB family of standards over the last decade and the constant development of new technologies resulted in the creation of a second generation of DVB standards that is expected to bring significant improvements in performance and to cater for the evolving market needs for higher bandwidth. One of the standards is DVB-T2 [1], a new digital terrestrial TV standard, which is an upgrade for the widely used DVB-T system. The initial tests show that the new standard brings more than 40% bit-rate improvement compared to DVB-T [2]. The second generation of DVB standards also benefits from the latest state of the art coding technologies. The Scalable Video Coding (SVC) standard [3] was developed as an extension of the H.264 Advanced Video Coding (H.264/AVC) [3] codec. The new standard is advantageous especially as an alternative to the simulcast distribution mode, where the same service is broadcasted simultaneously to multiple receivers with different capabilities. Instead of sending two or more independent streams to serve user groups of different quality requirements as in simulcast, an SVC encoded bit-stream, consisting of one base layer and one or more enhancements layers, may be transmitted to address the needs of those user groups. The enhancement layers improve the video in temporal, spatial, and/or quality domain. DVB recognized the potential of the SVC standard and adopted it as one of the video codecs used for DVB broadcast services [4]. In addition to the efficient simultaneous serving of heterogeneous terminals, building DVB services that make use of SVC may bring additional benefits. Among others benefits, deployment of SVC will enable providing conditional access to particular video quality levels, %U http://www.hindawi.com/journals/ijdmb/2010/435405/