%0 Journal Article %T Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR %A Andrew J. King %A Gilles Clermont %A Gregory F. Cooper %A Harry Hochheiser %A Shyam Visweswaran %J Archive of "AMIA Summits on Translational Science Proceedings". %D 2017 %X Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device¡¯s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use %U https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543363/