%0 Journal Article %T 基于点云的谷粒高通量表型信息自动提取技术 %A 桂力 %A 赵丽科 %A 郑顺义 %A 马浩 %A 黄霞 %J 农业机械学报 %D 2018 %X 在进行水稻的数字化考种、表型与基因关联分析和数字农业仿真模拟时,需要大量的谷粒表型信息作数据支撑。本文提出了一种基于三维点云的谷粒高通量表型信息自动提取方法,能同时自动获取谷粒的三维模型和40个表型参数,实现谷粒形状的定量和定性描述。首先,通过对谷粒点云数据进行聚类分析,完成谷粒点云的分类;其次,实现谷粒的三维重建,对谷粒离散点云进行柱面构网,获取谷粒点云的三维模型数据;最后,根据不同表型参数的特点,实现了谷粒的三维表面积和体积、长、宽、高、3个主成分剖面的周长和面积等11个基本参数与长宽比、长高比和体积比等11个衍生参数以及18个形状因子的自动提取。利用Handyscan 700型手持式激光扫描仪获取的谷粒高精度点云数据进行实验,成功实现了谷粒表型参数的自动提取,测量结果可达毫米级。基于主成分方法分析了各表型参数的权重。以游标卡尺测量值和Geomagic Studio测量值作为真值,长、宽、高的平均相对误差为1.14%、1.15%和1.62%,体积和表面积的相对误差为零,3个主成分剖面面积的平均相对误差为1.82%、2.12%和2.43%。本文方法与人工测量方法及软件测量方法相比,精度相当,且具有批量、自动、人工干预少(仅数据采集阶段需要人工操作)以及效率高的特点 %K 谷粒 表型信息 点云 自动化 批处理 %U http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20180429&flag=1