%0 Journal Article %T 基于小波纹理和随机森林的猕猴桃果园遥感提取 %A 刘秀英 %A 宁纪锋 %A 宋荣杰 %A 常庆瑞 %A 张宏鸣 %A 班松涛 %J 农业机械学报 %D 2018 %X 为快速、准确地从高分影像中获取猕猴桃种植分布信息,提出了一种结合小波变换纹理分析和随机森林分类的QuickBird影像猕猴桃果园自动提取方法。首先,采用coif5小波对QuickBird全色影像进行多尺度小波分解,计算各子频带小波系数的能量特征作为纹理特征;然后,将小波纹理与光谱特征组合构建分类特征;最后,利用随机森林分类实现土地利用分类和猕猴桃果园空间分布提取。结果表明,小波纹理识别猕猴桃果园的效果明显优于光谱特征和其他2种纹理特征;光谱+小波纹理特征的分类精度最高,猕猴桃果园提取精度(Fk)和总体分类精度(OA)分别为95.30%和94.46%,比光谱+灰度共生矩阵纹理分类分别提高6.70%和2.88%,比光谱+分形纹理分类显著提高13.43%和6.98%;随机森林分类结果优于相同特征下的支持向量机、最大似然分类。本文提取的猕猴桃果园面积与目视解译结果的相对误差小于7%。此外,利用本文方法对同期QuickBird影像另一研究区的苹果园分布进行提取,结果表明,该方法对苹果园提取有较好的适用性 %K 猕猴桃果园 遥感提取 小波纹理 随机森林 QuickBird %U http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20180425&flag=1