%0 Journal Article %T 安徽省PM2.5时空分布特征及关键影响因素识别研究 %J 环境科学学报 %D 2018 %X 基于2015年安徽省67个空气质量监测子站的PM2.5浓度数据,分析PM2.5的时空分布特征;运用BP神经网络改进DEMATEL模型,探讨影响PM2.5浓度的关键因素及因子间的关联性.结果表明:①2015年安徽省PM2.5平均浓度为52.03 μg·m-3,总体呈现秋冬高、春夏低的季节性规律;PM2.5浓度日变化总体呈双峰分布,冬季PM2.5浓度昼夜变化剧烈,全年、春季和秋季变化趋势大致相同,夏季相对平缓;②安徽省PM2.5浓度整体上由东向西、由中部向南北两侧呈递减趋势,浓度值由高到低依次为:江淮丘陵、长江中下游平原、淮北平原和皖南山区;③指标体系中,人口城镇化率、年平均气温、单位GDP电耗、工业废气治理设施数等4个指标因子属于强驱动因素,对PM2.5浓度降低起着根本性推动作用;④年降水总量、房屋施工面积、O3浓度等3个指标因子属于强特征因素,是降低PM2.5浓度最直接的因素.结论表明,运用BP-DEMATEL模型能有效识别关键影响因素,有助于为PM2.5综合治理提供参考 %K PM2.5 BP神经网络 DEMATEL模型 驱动因素 特征因素 %U http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20170820005&flag=1