%0 Journal Article %T 多领导粒子策略的动态多目标粒子群算法 %A 曾重阳 %A 王利平 %A 王茜 %A 魏立新 %J 中山大学学报(自然科学版) %D 2016 %X 摘要 快速追踪不同环境下pareto前沿,并保证最优解的收敛性和分布性,是动态多目标优化问题的关键.提出一种基于多领导粒子策略的动态多目标优化算法(Dynamic Multiobjective Particle Swarm Optimization Algorithm Based on Multiple Leaders Strategy,MLSDMPSO),在速度更新时,选择多个领导粒子来引导当前粒子飞行,寻找最优解;引入环境变化检测算子判断环境是否发生变化,并对环境变化做出响应.最后将该算法在三种不同类型的测试函数上进行测试,并将该算法与基于分解的动态多目标优化算法DMOEADM和基于多种群协同进化的动态多目标优化算法DCOEA进行比较,仿真结果表明,该算法有效的提高了对环境变化的追踪能力以及所得解的收敛性和分布性 %K 动态多目标 %K 多领导粒子 %K 收敛性 %K 分布性 %U http://xwxt.sict.ac.cn/CN/abstract/abstract3488.shtml