%0 Journal Article %T 进化多目标距离矩阵聚类研究 %A 刘丛 %A 邬春学 %J 中山大学学报(自然科学版) %D 2016 %X 摘要 聚类分析在科学研究和现实生活中都有广泛的应用.然而,当前的聚类算法仍然面临一些挑战,自动确定最佳聚类数目和复杂分布数据聚类是最主要的两种,自动确定复杂分布数据的聚类数目并对其正确聚类是两者的结合.提出一种基于进化多目标的距离矩阵聚类算法(Multi-objective Distance Matrix Evolutionary Clustering,MODMEC).首先使用一种实数标签的编码方式表示染色体,该染色体可两次解码成聚类候选解.其次使用聚类代表点代替聚类中心点设计聚类算法,通过类内紧凑度和类间离散性自动确定最佳聚类数目.最后使用进化多目标框架并行优化.将MODMEC在不同分布的五种人工测试集和两种UCI测试集上与四种常用的聚类算法做了比较.实验结果表明,MODMEC在检测最佳聚类数目和聚类精度上都获得了良好的效果. %K 聚类 %K 最佳聚类数目 %K 进化多目标算法 %K 进化多目标距离矩阵聚类 %U http://xwxt.sict.ac.cn/CN/abstract/abstract3457.shtml