%0 Journal Article %T 一种结合姿态和场景的图像中人体行为分类方法 %A 李绍滋 %A 陈锻生 %A 雷庆 %J 中山大学学报(自然科学版) %D 2015 %X 摘要 提出一种结合姿态特征和场景信息对图像中的人体行为进行分类的方法,采用多尺度密集采样和SIFT特征对图像进行特征提取和描述,以非参数概率密度估计方法对特征空间的样本分布进行估计,并对概率密度梯度向量在码本单词上的聚集进行描述得到紧凑且有判别力的场景编码.姿态分类则利用人体部位的表观和配置关系从图像中提取出与特定行为类别相关的姿态特征,利用最大分类间隔姿态分类器计算得到每个测试样本属于各个行为类别的评分值.最后结合姿态分类器和行为场景分类器两种分类器输出值完成对测试样本的分类.将本文的方法运用于Willow-actions数据集上进行评价,实验结果证明了该方法的有效性 %K 人体行为识别 %K 姿态特征 %K 场景信息 %K 特征融合 %U http://xwxt.sict.ac.cn/CN/abstract/abstract2928.shtml