%0 Journal Article %T Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy %A Hiroshi Nakada %A Toshiro Sakae %A Yasuhiro Tanimoto %A Mari Teranishi %A Takao Kato %A Takehiro Watanabe %A Hiroyuki Saeki %A Yasuhiko Kawai %A Racquel Z. LeGeros %J International Journal of Biomaterials %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/615018 %X The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance. 1. Introduction Dental implantation is a treatment method in which fixtures are implanted in the jawbone, followed by prosthetic implantation after a resting period of approximately 3¨C6 months, at which time new bone is formed around the fixtures [1]. This process sets the cortical bone as the primary anchorage unit. Bone modeling and remodeling processes are important (1) to induce long-term stability of the implants; (2) to develop osseointegration between implant materials and the bone; (3) to allow the maturation of new bone around the implants. It has been reported that the maximum occlusal force in adults with a natural dentition is 430£¿N [2], and similar loads are likely to be applied to implants as well as normal prostheses. Therefore, to achieve long-term retention and stability of implants under such conditions, the quality of newly formed bone around implants is important. Many studies have reported that newly formed bone around implants is spongy bone [3]. However, although the morphology of newly formed bone is reportedly like spongy bone, it is difficult to discriminate whether the bone quality is mature like cortical bone, or immature like spongy, osteoid, or cartilaginous bone; therefore, evaluation of the bone quality is required. The quality of bone forming around implants has been investigated by various groups. Nakano et al. [4] evaluated bone density and alignment of biological apatite (BAp), and Boskey and Pleshko [5] used Fourier-transform infrared (FTIR) imaging to assess bone and cartilage quality and composition. In addition, our group has reported on the use of polarized microscopy [6] and scanning electron microscopy (SEM) [7] to evaluate new bone and cortical bone quality, as well as microscopic Raman spectroscopy to analyze phosphate peaks of bone apatite [6], and microcomputed tomography (micro-CT) to assess %U http://www.hindawi.com/journals/ijbm/2012/615018/