%0 Journal Article %T In Vitro Cytoprotection of Resveratrol Against H2o2-induced Oxidative Stress and Injury in Astrocytes - In Vitro Cytoprotection of Resveratrol Against H2o2-induced Oxidative Stress and Injury in Astrocytes - Open Access Pub %A Guoqiang Xing %A Osarieme Evbuomwan %A Pushpa Sharma %A Zhaozhang Li %J OAP | Home | Journal of Behavior Therapy And Mental Health | Open Access Pub %D 2018 %X Oxidative stress mediated neural cell death is thought to be involved in the progression of secondary cell injury following brain trauma. Agents that can block oxidative stress-related injury could be potential therapies for TBI. Resveratrol, a polyphenol found in plants and red wine, is cytoprotective due to its potent antioxidant activities. To further understand how resveratrol could affect oxidative stress-induced injury, we hypothesized that the cytoprotective activities of resveratrol could be dose-dependent. In this study, resveratrol-induced cytoprotection was evaluated in cultured astrocytes. Primary rat astrocytes were cultured in T-75 flasks to a confluence of 80% before being plated onto 96-well plates. After 24 hours of acclimation, astrocytes were treated with various doses of hydrogen peroxide (H2O2) (0.1, 0.25, 0.5 and 1 ¦ÌM) and resveratrol (25, 50, 75, 100 ¦ÌM), respectively. Cell viability was determined 24 hours later using Alamar Blue Assay. Treatment of astrocytes with 0.5 mM H2O2, left 65% of astrocytes non-viable whereas treatment of astrocytes with 0.1 mM H2O2 had no effect on astrocytes viability; whereas 1 mM, H2O2 caused total loss of astrocyte viability. Resveratrol treatment at 75 ¦ÌM and 100 ¦ÌM has reduced 0.5 mM H2O2-induced cytotoxicity in astrocytes by 50%. Immunostaining with GFAP also confirmed these findings about the cytoprotective effects of resveratrol in astrocytes exposed to H2O2. These results suggest that resveratrol could be a potential neuroprotective agent in TBI due to its antioxidant properties. Further studies are needed to evaluate the long- term effects of resveratrol in animal models of TBI. DOI10.14302/issn.2474-9273.jbtm-16-1151 Traumatic brain injury (TBI) is the leading cause of death in young people. So far there is no FDA approved drug for TBI. Because oxidative stress-induced neural cell death is thought to be involved in the secondary injury and poor outcome of TBI, plant and fruit-derived antioxidants could be potentially used for treating TBI. Increasing evidence suggests that resveratrol is such a promising neuroprotective agent. Yet their safety and toxicity should be evaluated before clinical application. Resveratrol (3, 5, 4¡¯-Trihydroxy-trans-stilbene) is a polyphenol found in grapes, berries, peanuts and most abundantly in red wines. Resveratrol is a strong antioxidant that can shield cells from free radical-induced oxidative stress and damage, with strong cardioprotective and anti-inflammatory properties1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. Recent studies have shown that resveratrol %U https://www.openaccesspub.org/jbtm/article/339