%0 Journal Article
%T 一种基于节点分割的隐私属性(a, k)-匿名算法
An Privacy Attribute (a, k)-Anonymous Algorithm Based on Node Segmentation
%A 邓秀勤
%A 张翼飞
%A 江志华
%A 谭立辉
%J Hans Journal of Data Mining
%P 143-151
%@ 2163-1468
%D 2020
%I Hans Publishing
%R 10.12677/HJDM.2020.102015
%X 伴随着网络技术的发展,各类社交网络所包含的信息也在不断地增大。在数据信息增加的同时也意味着隐私信息泄露的可能性增大。因此在上传和提取用户信息的时候应该考虑到敏感信息的保护,在k-匿名算法的基础上衍生的(a, k)-匿名算法是经典的隐私保护模型,但是随着社交网络的复杂性不断增加,传统的(a, k)-匿名算法不足以满足社交网络中信息隐匿的要求。针对在社交网络中,节点的结构信息和非隐私属性信息等也可能会受到攻击,本文提出一种基于节点分割的(a, k)-匿名算法。该算法对社交网络中带有隐私属性值的节点进行分割,使得节点特征被分割到两个节点里,降低了节点被攻击识别的可能性。实验结果表明,该算法可以有效防御部分攻击造成的隐私属性泄露,同时保证数据保持一定的可用性。
伴随着网络技术的发展,各类社交网络所包含的信息也在不断地增大。在数据信息增加的同时也意味着隐私信息泄露的可能性增大。因此在上传和提取用户信息的时候应该考虑到敏感信息的保护,在k-匿名算法的基础上衍生的(a, k)-匿名算法是经典的隐私保护模型,但是随着社交网络的复杂性不断增加,传统的(a, k)-匿名算法不足以满足社交网络中信息隐匿的要求。针对在社交网络中,节点的结构信息和非隐私属性信息等也可能会受到攻击,本文提出一种基于节点分割的(a, k)-匿名算法。该算法对社交网络中带有隐私属性值的节点进行分割,使得节点特征被分割到两个节点里,降低了节点被攻击识别的可能性。实验结果表明,该算法可以有效防御部分攻击造成的隐私属性泄露,同时保证数据保持一定的可用性。
%K 隐私属性,隐私保护,节点分割,匿名,社交网络
Privacy Property
%K Privacy Protection
%K Node Split
%K Anonymous
%K Social Networks
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=35152