%0 Journal Article %T 带有Power-Law型粘性项的可压缩非牛顿流的光滑解
Classical Solutions to the Compressible Non-Newtonian Fluids with Power-Law Viscous %A 黄晓娟 %J Pure Mathematics %P 243-253 %@ 2160-7605 %D 2019 %I Hans Publishing %R 10.12677/PM.2019.93031 %X
本文研究一维有界区间上的可压非牛顿流体模型。在初始密度有正下界的情况下,通过构造逼近解,应用能量估计,得到了带有Power-Law结构粘性项的非牛顿流模型初边值问题光滑解的局部存在性。
In this paper, a one-dimensional compressible non-Newtonian fluid model on a bounded interval is studied. If the initial density has a positive lower bound, the local existence of the classical solutions for the initial boundary value problem of a non-Newtonian fluid model with Power-Law viscous is proved by constructing approximate solutions and applying energy estimation.
%K 可压缩非牛顿流,Power-Law 型粘性项,光滑解
Compressible Non-Newtonian Fluids %K Power-Law Viscous %K Classical Solution %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=30066