%0 Journal Article %T 整函数差分唯一性
Uniqueness of Difference about Entire Functions %A 黄小皇 %A 刘丹 %J Pure Mathematics %P 370-376 %@ 2160-7605 %D 2019 %I Hans Publishing %R 10.12677/PM.2019.93049 %X
本文探讨整函数的差分唯一性问题,证明了:设f(z)为开平面有穷级整函数,g(z)=mi(z)f(z+ci)+…+mk(z)f(z+c为f(z)的差分多项式,其中mi(z)(i=1,2,…,k)为f的整小函数, ci(i=1,2,…,k)k个判别的有穷复数。又设a(z)?0为f(z)的一个小函数,若f(z)与g(z)分担0,IM分担a(z) ,则f(z)=g(z) 。
<br/>In this paper, we investigate the uniqueness of difference operators about entire function, and prove: let f(z) be an entire function of finite order, k be some positive integers, let a(z) be a small function of f(z) , and let g(z)=mi(z)f(z+ci)+…+mk(z)f(z+c) be the difference poly-nomial of f(z) , where mi(z)(i=1,2,…,k)  are the small functions of f(z) , and ci(i=1,2,…,k)  are some finite distinct values. If f(z) and g(z) share 0 CM, and share a(z)IM, then f(z)=g(z) .
%K 整函数,分担小函数,差分多项式
Entire Function %K Shared Small Function %K Difference Polynomials %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=30322