%0 Journal Article %T 基于改进多层编码遗传算法的多配送中心车辆路径优化方法研究
Research on Multi-Distribution Center Vehicle Routing Optimization Method Based on Improved Multi-Layer Coding Genetic Algorithm %A 许伦辉 %A 曹宇超 %A 黄宝山 %J Open Journal of Transportation Technologies %P 222-232 %@ 2326-344X %D 2019 %I Hans Publishing %R 10.12677/OJTT.2019.83027 %X
为了提高物流运输效率,减少不必要的资源消耗,综合规划一条最有效率的车辆配送货物的路径成为当下物流交通研究的一个热点问题。而其中多配送中心的情况研究尚少。车辆路径优化问题(VRP)是基于旅行商问题(TSP)衍生的,这类问题我们都将其归为非确定性多项式(NP)完全组合优化问题。本文在交通物流车辆路径规划的背景下,首先从VRP问题的概念分析出发,构建了一个数学模型,然后对本文解决该问题的核心算法——遗传算法的理论基础及策略思路进行了一个描述。最后通过加入多因素分析,改进了评价的综合成本,将改进多层编码的遗传算法应用于解决多配送中心VRP问题,并在过程中探索改进。
In order to improve logistics transportation efficiency and reduce unnecessary resource con-sumption, comprehensive planning of a most efficient vehicle distribution route has become a hot issue in the next logistics transportation research. There are still few studies on the situation of multiple distribution centers. The Vehicle Routing Optimization Problem (VRP) is derived from the Traveling Salesman Problem (TSP), which we classify as a non-deterministic polynomial (NP) complete combinatorial optimization problem. In the context of traffic logistics vehicle routing, this paper firstly constructs a mathematical model from the conceptual analysis of VRP problem, and then describes the theoretical basis and strategic thinking of the core algorithm—genetic algorithm to solve this problem. Finally, by adding multi-factor analysis, the comprehensive cost of evaluation is improved, and the improved multi-encoding genetic algorithm is applied to solve the multi-distribution center VRP problem, and the improvement is explored in the process.
%K VRP问题,遗传算法,多层编码,交通运输,物流,调度,路径优化
VRP Problem %K Genetic Algorithm %K Multi-Layer Coding %K Transportation %K Logistics %K Dispatching %K Path Optimization %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=30236