%0 Journal Article %T 退化抛物-双曲方程动力学解的唯一性<br>Uniqueness of Kinetic Solutions to Quasilinear Anisotropic Degenerate Parabolic-Hyperbolic Equation %A 郝兴文 %A 王泽军 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0022 %X 主要研究系数显含有时间和空间变量的退化抛物{-}双曲型方程柯西问题动力学解的唯一性. 首先推广了这种类型方程的动力学公式, 在给定系数适当的光滑性条件下, 得到了动力学解的唯一性.<br>This paper deals with the uniqueness of the kinetic solutions to Cauchy problem of general anisotropic degenerate parabolic-hyperbolic equations. Kinetic formulation is extended to such general degenerate parabolic-hyperbolic equations with coefficients depending on time-spatial variables. Contraction property of kinetic solutions is established under appropriate conditions on diffusion and convection functions. %K 退化抛物{-}双曲方程 %K 动力学解 %K 熵解 %K 唯一性< %K br> %K Degenerate parabolic-hyperbolic equation %K Kinetic solutions %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A301&flag=1