%0 Journal Article %T 含有不可数个无界变差点的一维连续函数<br>1-Dimensional Continuous Functions with Uncountable Unbounded Variation Points %A 梁永顺 %A 张 琦 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0013 %X 在单位区间$[0,1]$ 上构造了图像长度为无穷的一维连续函数. 该函数含有不可数个但Lebesgue测度为$0$的无界变差点. 所有无界变差点组成的集合中每一点皆为该集合的聚点.<br>A 1-dimensional continuous function whose graph has infinite length on $[0,1]$ has been constructed. Unbounded variation points of this function are uncountable, while Lebesgue measure of them is 0. All unbounded variation points are accumulation points of the set of unbounded variation points of the function. %K Cantor集 %K 盒维数 %K 变差 %K 图像长度< %K br> %K Cantor set %K Box dimension %K Variation %K Length of graph %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A203&flag=1