%0 Journal Article %T 一类 Markov 模算子半群与相应的算子值 Dirichlet 型刻画<br>Characterization of Class of Markov Module Operator Semigroups and the Corresponding Operator-Valued Dirichlet Forms %A 张伦传 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0019 %X 本文基于${\rm II}_1${-}型因子把非交换对称 Dirichlet 型理论推广到算子值情形. 在此框架下建立了算子值 Dirichlet 型, Markov 模算子半群及 Markov 预解集之间的一一对应关系.<br>The theory of noncommutative symmetric Dirichlet forms is generalized to the operator-valued cases based on ${\rm II}_1$ factor. The author establishes the natural correspondence among operator-valued Dirichlet forms, Markov module operator semigroups and Markovian resolvents within this context. %K ${rm II}_1$型因子 %K Hilbert $w^*${-}双模 %K Markov 模算子半群 %K 算子值 Dirichlet 型< %K br> %K ${rm II}_1$ factor %K Hilbert $w^*$-bimodule %K Markov module operator semigroup %K Operator-valued Dirichlet form %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A209&flag=1