%0 Journal Article %T Hom-Lie环幂零的条件<br>Conditions for Nilpotency of Hom-Lie Rings %A 贺婷婷 %A 徐晓宁 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0033 %X 介绍并研究~hom{-}Lie代数及~hom{-}Lie环的幂零性. 将线性映射$\alpha$ 由一般的线性映射限制到研究$\alpha$ 是对合映射的情形. 通过建立Lie代数与~hom{-}Lie代数间的关系, 建立起Lie代数幂零和~hom{-}Lie代数幂零间的联系. 讨论了hom{-}Lie代数幂零的极大值子代数条件. 此外, 还研究了~hom{-}Lie环幂零的正规化子条件和极大子代数条件.<br>The aim of this paper is to introduce and study nilpotency of hom-Lie algebras and hom-Lie rings. The authors reduced the case where the twist map $\alpha$ is general linear map to the study of involutive hom-Lie algebras. This paper established a correspondence of nilpotency between Lie algebras and hom-Lie algebras. The maximal subalgebras condition for nilpotency of hom-Lie algebras is discussed. Moreover, the normalizer condition and the maximal subalgebras condition for nilpotency of hom-Lie rings are investigated. %K Hom-Lie algebra %K Hom-Lie ring %K Noetherian ring %K Maximal subalgebra< %K br> %K Hom-Lie algebra %K Hom-Lie ring %K Noetherian ring %K Maximal subalgebra %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A405&flag=1