%0 Journal Article %T 具有脉冲的分数阶Bagley-Torvik 模型边值问题<br>Boundary Value Problems for Fractional Order Bagley-Torvik Models with Impulse Effects %A 刘玉记 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0027 %X 将具有脉冲的分数阶Bagley-Torvik微分方程边值问题巧妙地转化为积分方程, 定义加权Banach空间及全连续算子, 运用不动点定理获得该边值问题解的存在性定理. 举例说明了定理的应用. 最后提出有趣的研究问题.<br>The author converts the boundary value problem for impulsive fractional order Bagley-Torvik differential equation to an integral equation technically (a new method). By defining a weighted function Banach space and a completely continuous operator, some existence results for solutions are established. This analysis relies on the well known Schauder's fixed point theorem. Examples are given to illustrate the main results. %K 脉冲分数阶Bagley-Torvik微分方程 %K 边值问题 %K Schaefer不动点定理< %K br> %K Impulsive fractional order Bagley-Torvik differential equation %K Boundary value problem %K Schaefer's fixed point theorem %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A306&flag=1