%0 Journal Article %T 一类对称五次系统的极限环分支<br>Limit Cycle Bifurcations of a Symmetric Quintic System %A 尚德生 %A 张耀明 %J 数学年刊(A辑) %D 2017 %R 10.16205/j.cnki.cama.2017.0029 %X 对一类对称五次近Hamilton系统在五次对称摄动下产生的极限环数目进行了研究. 通过多参数摄动理论和定性分析, 得到这类对称摄动下的五次系统至少可以存在28个极限环. %, 其分布见图7.<br>The authors study the number of limit cycles for a class of symmetric quintic near-Hamiltonian system under symmetric perturbations to the origin. Using multi-parameter perturbation theory and qualitative analysis, they find that the perturbed system can have at least 28 limit cycles. %K Perturbation %K Singular point value %K Homoclinic loop %K Limit cycle< %K br> %K Perturbation %K Singular point value %K Homoclinic loop %K Limit cycle %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=38A311&flag=1