%0 Journal Article %T 某些对角方程在有限域上的解数<br>The Number of Solutions of Certain Diagonal Equations over Finite Fields %A 顾晶晶 %A 曹喜望 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0020 %X 主要运用Gauss和以及Jacobi和的相关性质给出两类对角方程在有限域上的解数公式, 分别是形如$\sum\limits_{i=1}^{s}a_ix^{m_i}_i=c$的对角方程, 其中$a_i$, $c\in\mathbb F_{q^2}^*$, $(m_i,m_j)=1$, $m_i|(q+1)$, $m_i$为奇数或$\frac{q+1}{m_i}$为偶数, $i=1,2,\cdots, s$, 以及形如$\sum\limits_{i=1}^{s}x^m_i=c$的对角方程, 其中$c\in\mathbb F_q^*$, $m|(q+1)$, $m$ 为奇数或$\frac{q+1}{m}$ 为偶数.<br>In this paper, using some properties about Gaussian sums and Jacobi sums, the authors get the explicit formulas for the number of solutions of the equation $\sum\limits_{i=1}^{s}a_ix_i^{m_i}=c$, where $a_i$, $c\in\mathbb F_{q^2}^*$, $(m_i,m_j)=1$, $m_i|(q+1)$, $m_i$ odd or $\frac{q+1}{m_i}$is even, $i=1,2,\cdots,s$, and the equation $\sum\limits_{i=1}^{s}x_i^{m}=c$, where $c\in\mathbb F^*_q$, $m|(q+1)$, $m$ odd or $\frac{q+1}{m}$ is even. %K 对角方程 %K 解数 %K Gauss和 %K Jacobi和 %K 有限域< %K br> %K Diagonal equation %K Number of solutions %K Gaussian sum %K Jacobi sum %K Finite field %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A210&flag=1